viernes, 30 de enero de 2009

Centrales Eolicas








Como Funcionan




Centrales eólicas

El sol también es la causa del movimiento de grandes masas de aire desde zonas de alta presión a zonas de baja presión. Este viento se puede recoger por grandes hélices o molinos, conectados a un rotor.

La clave de la conversión de la energía contenida en el aire en movimiento giratorio está en un diseño muy cuidadoso, tanto de las palas de la hélice como del multiplic

ador, que convierte su rotación lenta en un giro muy rápido. El viento choca contra las palas y provoca diferencias de presión entre sus dos caras, haciendo girar su estructura. Es un proceso idéntico al que hace avanzar un avión gracias al giro de la hélice.

El engranaje multiplicador convierte el movimiento lento de la hélice en un giro rápido para activar el generador. El tamaño de las palas también está en relación con la cantidad de energía que producirá el molino. El emplazamiento de los molinos debe ser elegido cuidadosamente. Los mapas de potencialidad eólica marcan las zonas más adecuadas para la instalación de aerogeneradores que, por lo general, coinciden con las cumbres de montañas y sierras y con la costa.




Esquema De Funcionamiento y Sus Partes

























Impacto Ambiental











AFECCIONES AMBIENTALES
Todas las centrales eólicas previstas en Navarra se están instalando o se van a instalar en zonas montañosas. Estas cumbres forman, en su conjunto, uno de los principales valores paisajísticos que caracterizan a nuestra Comunidad. Debido a esta singularidad geográfica y naturalística, las afecciones que ocasionan las centrales no se pueden comparar con las que originan las ubicadas en otras regiones de Europa, cosa que han hecho el Gobierno de Navarra y E.H.N. de forma interesada. La construcción de las centrales eólicas en los montes navarros está ocasionando un grave impacto paisajístico; una grave erosión, debido a los desmontes de tierra y a la deforestación; destrucción de cubierta vegetal; pérdida de biodiversidad, por la brutal transformación de los montes; y afección a la avifauna sedentaria y migradora, por la mortandad que producen los aerogeneradores y tendidos eléctrico, y por impedir a las aves migrar por los montes que han venido utilizando desde hace miles de años. (En la foto aparecen varios buitres muertos en la Central de Alaiz).
PROPUESTAS DE GURELUR
Paralización inmediata de todos los proyectos eólicos y realización de estudios sobre las afecciones ocasionadas por las centrales construidas hasta la fecha. De esta forma, se podrán conocer las verdaderas afecciones que este tipo de infraestructuras está ocasionando en la Naturaleza navarra.
Descarte del modelo de central eólica que se está utilizando actualmente en Navarra, reduciendo el número de aerogeneradores y adaptando las centrales a la orografía del terreno, a los valores ecológicos de la zona, a las afecciones paisajísticas y sociales -entre otros criterios-, y no a los intereses económicos de las empresas; y ubicando las mismas en zonas más llanas, aunque ello suponga una menor producción.
Elaboración de rigurosos estudios de impacto ambiental. Los estudios que se han realizado por parte de las empresas no se sustentan por varios motivos. El primero, porque no ha habido tiempo de hacerlos adecuadamente, sobre todo si tenemos en cuenta que se incluyen datos sobre la migración de aves a través de los collados de las sierras afectadas.
Respeto total y absoluto a las leyes, fundamentalmente a las ambientales. El Gobierno de Navarra, a la hora de dar el visto bueno a los distintos proyectos eólicos, está conculcando todas las leyes que regulan las actividades susceptibles de afectar al medio ambiente. Parecer ser que, para el Gobierno de Navarra y para los defensores a ultranza de este tipo de energía, los beneficios de la producción de energía eólica compensan la destrucción de la Naturaleza navarra.
Adaptar la producción de energía eólica a la capacidad del territorio y no a los intereses de las industrias eléctricas. Las 30 centrales previstas son excesivas para los 10.421 km2 de nuestro territorio, ya que van a producir una colmatación paisajística sin precedentes. Asimismo, van a destruir una parte importante de los valores naturales de Navarra.



Tecnologias Correctoras

POSICIONAMIENTO DE MEDIO AMBIENTE DEL GOBIERNO VASCO CONTRARIO A LA CENTRAL EÓLICA DE ORDUNTE

La Asociación Medioambiental Izate felicita al Departamento de Medio Ambiente y Ordenación del Territorio del Gobierno Vasco por su decisión respecto a la central eólica de Ordunte de considerar que "no es asumible el proyecto de parque eólico en Ordunte, por las consecuencias ambientales irreversibles que tendría". Este importante y excelente posicionamiento viene a ratificar las tesis y argumentos contrarios a la central eólica de Ordunte que desde las diferentes asociaciones conservacionistas hemos defendido en los últimos meses.

Desde Izate siempre hemos creído que con los estudios realizados en ordunte había quedado suficientemente claro la inviabilidad ambiental de esta central eólica, tal y como expusimos en nuestras alegaciones al proyecto que pueden consultar más abajo.

Además, este rechazo de Medio Ambiente a la central eólica de Ordunte refuerza nuestra tesis de que el PTS (Plan Territorial Sectorial) de la Energía Eólica no es correcto, por lo que solicitamos que este PTS se replantee y se modifique.Las ubicaciones seleccionadas no están correctamente valoradas ambientalmente, como lo está demostando el caso de Ordunte. A la hora de redactar este PTS primó la rentabilidad energética, y esto ha puesto en serio peligro a algunas de los mejores hábitatas de montaña de la Comunidad Autonóma Vasca. Hay que recordar también el conflicto que hubo en Alava con la central eólica de Badaia. Y otras áreas montañosas incluidas en el PTS también son de un alto valor ambiental: Gorbeia, Arkamo, Iturrieta, Gazume..

Además este Plan no regula ni ordena el desarrollo de la energía eólica sino el de las centrales eólicas de una determinada potencia y basa sus cálculos en tecnología obsoleta. Toda la selección de emplazamientos, producción obtenible, objetivos energéticos,... se basa en el cálculo obtenido con unos aerogeneradores anticuados. Otro de los errores de este Plan es que no incluye a centrales eólicas con menos de 8 molinos y una potencia inferior en la instalación a 10 MW, por lo que la instalación de este tipo de minicentrales eólicas no está regulada y se puede solicitar su instalación en cualquier lugar de la CAV, aunque sea un Espacio Natural Protegido, lo que esta dando lugar múltiples proyectos de minicentrales eólicas sin suficiente rigor ambiental.
También resulta contradictorio que mientras el Departamento de Industria del Gobierno Vasco, proponga a través de este PTS una central eólica en la sierra de Ordunte, el Departamento de Medio Ambiente del Gobierno Vasco a petición de la Unión europea ha designado la sierra de Ordunte como LIC (Lugar de Interés Comunitario), es decir, una especie de Parque Natural europeo. La instalación de una central eólica en Ordunte destruiría valores por lo que dicha sierra ha sido protegida, mataría cientos de aves muchas de ellas amenazadas, destruiría parte de su vegetación natural, industrializaría estas montañas produciendo un altísimo impacto ambiental y paisajístico. Y todo esto con el objetivo de generar el 0,3% de la energía que se consume en la Comunidad Autónoma Vasca. Y es que según los datos de la "Estrategia Energética de Euskadi 2010" elaborada por el Gobierno Vasco, para el año 2010 sólo el 1,7% de la energía que consumamos procederá de los centrales eólicas, una cantidad irrisoria que fácilmente se puede evitar con el ahorro. Y eso después de haber construido las 12 centrales eólicas que el Gobierno Vasco ha decidido colocar en las sierras vascas, de instalar cientos de molinos y cientos de kilómetros de tendidos eléctricos, y de producir un gravísimo impacto paisajístico y ambiental


Centrales Eolicas Instaladas En España


Introducción.Las centrales eolicas instaladas en españa son de la energía eólica fueron la impulsión de navíos, la molienda de granos y el bombeo de agua, y sólo hasta finales del siglo pasado la generación de energía eléctrica. Actualmente las turbinas eólicas convierten la energía cinética del viento en electricidad por medio aspas o hélices que hacen girar un eje central conectado, a través de una serie de engranajes (la transmisión) a un generador eléctrico.
En lo que respecta a capacidad instalada, para finales de 1997 a nivel mundial se tenían instalados alrededor de 7700 MW. En México se cuenta con la central eólica de la Ventosa en Oaxaca, operada por CFE, con una capacidad instalada de 1.5 MW y una capacidad adicional en aerogeneradores y aerobombas, según el Balance nacional de energía de 1997, de alrededor de 2.4 MW.



Existen varias ventajas competitivas de la energía eólica con respecto a otras opciones, como son:
Se reduce la dependencia de combustibles fósiles.
Los niveles de emisiones contaminantes, asociados al consumo de combustibles fósiles se reducen en forma proporcional a la generación con energía eólica.
Las tecnologías de la energía eólica se encuentran desarrolladas para competir con otras fuentes energéticas.
El tiempo de construcción es menor con respecto a otras opciones energéticas.
Al ser plantas modulares, son convenientes cuando se requiere tiempo de respuesta de crecimiento rápido.

La investigación y desarrollo de nuevos diseños y materiales para aplicaciones en aerogeneradores eólicos, hacen de esta tecnología una de las más dinámicas, por lo cual constantemente están saliendo al mercado nuevos productos más eficientes con mayor capacidad y confiabilidad.



Sistemas Eólicos. Descripción.

Un sistema conversor de energía eólica se compone de tres partes principales: (i) el rotor, que convierte la energía cinética del viento en un movimiento rotatorio en la flecha principal del sistema; (ii) un sistema de transmisión, que acopla esta potencia mecánica de rotación de acuerdo con el tipo de aplicación. Aplicación para cada caso, es decir, si se trata de bombeo de agua el sistema se denomina aerobomba, si acciona un dispositivo mecánico se denomina aeromotor y si se trata de un generador eléctrico se denomina aerogenerador.
El rotor puede ser de eje horizontal o vertical, éste recupera, como máximo teórico, el 60% de la energía cinética del flujo de viento que lo acciona. Esta formado por las aspas y la maza central en donde se fijan éstas y se unen a la flecha principal; el rotor puede tener una o más aspas. Un rotor pequeño, de dos aspas, trabaja a 900 revoluciones por minuto (rpm), en tanto que uno grande, de tres aspas y 56 metros de diámetro, lo hace a 32 rpm. El rotor horizontal de tres aspas es el más usado en los aerogeneradores de potencia, para producir electricidad trifásica conectada a los sistemas eléctricos de las empresas suministradoras.
La transmisión puede consistir en un mecanismo para convertir el movimiento rotatorio de la flecha en un movimiento reciprocante para accionar las bombas de émbolo de las aerobombas, que en el campo se utilizan para suministrar agua a los abrevaderos del ganado o a las viviendas. Para la generación de electricidad normalmente se utiliza una caja de engranes para aumentar las revoluciones a 900, 1,200 ó 1,800 rpm, para obtener corriente alterna trifásica de 60 ciclos por segundo.
En la actualidad, la generación de electricidad es la aplicación más importante de este tipo de sistemas. Los aerogeneradores comerciales alcanzan desde 500 hasta 1,000 kW de potencia nominal, tienen rotores de entre 40 y 60 m de diámetro y giran con velocidades que van de las 60 a las 30 rpm. Los generadores eléctricos pueden ser asíncronos o síncronos, operando a una velocidad y frecuencia constante, que en México es de 60 hz.. En el caso de aerogeneradores con potencias inferiores a los 50 kW también se utilizan generadores de imanes permanentes, que trabajan a menor velocidad angular (de entre 200 y 300 rpm), que no necesitan caja de engranes y que, accionándose a velocidad variable, pueden recuperar mayor energía del viento a menor costo.
Un sistema conversor de energía eólica es tan bueno como su sistema de control. La fuerza que ejerce el viento sobre la superficie en que incide es función del cuadrado de la velocidad de éste. Rachas de más de 20 metros por segundo, que equivalen a más de 70 km/hora, pueden derribar una barda o un anuncio espectacular, e incluso dañar un aerogenerador si éste no está bien diseñado o su sistema de control esta fallando.
En los aerogeneradores de potencia, el sistema de control lo constituye un microprocesador que analiza y evalúa las condiciones de operación considerando rumbo y velocidad del viento; turbulencia y rachas; temperaturas en el generador, en la caja de transmisión y en los baleros de la flecha principal. Además, muestrea la presión y la temperatura de los sistemas hidráulicos de los frenos mecánicos de disco en la flecha; sus rpm, así como los voltajes y corrientes de salida del generador. Detecta vibraciones indebidas en el sistema, optando por las mejores condiciones para arrancar, parar, orientar el sistema al viento y enviar señales al operador de la central eoloeléctrica sobre la operación del mismo.
La torre que soporta al aerogenerador de eje horizontal es importante, ya que la potencia del viento es función del cubo de su velocidad y el viento sopla más fuerte entre mayor es la distancia más alto del suelo; por ello, el eje del rotor se sitúa por lo menos a 10 metros en aerogeneradores pequeños y hasta 50 o 60 metros del suelo, en las máquinas de 1000 kW. En un aerogenerador de 500 kW son típicas las torres de 40 metros, y estas pueden ser de dos tipos: La tubular, recomendada en áreas costeras, húmedas y salinas, y la estructural o reticular, propia de regiones secas y poca contaminación atmosférica, por ser más baratas y fáciles de levantar.

Sistemas Eólicos. Tecnologías.

A partir de las diversas experiencias internacionales de operación de grandes conjuntos de aerogeneradores modernos, constituyendo centrales eoloeléctricas, de 1980 a 1995 se evolucionó de la máquina de 50 kW a la de 500 kW, estando actualmente en proceso de introducción las unidades de 750 y 1000 kW, las que se consideran el tope para este tipo de arquitectura y tecnologías actuales de grandes aerogeneradores.
La tecnología de materiales alrededor de los materiales compuestos, que permitan estructuras más esbeltas y ligeras, más resistentes a la oxidación y la corrosión, y más fuertes a la vez, así como de supermagnetos en los generadores, permitirán desarrollar nuevos conceptos más confiables y económicos, desde unidades de decenas de Watts hasta grandes aerogeneradores de potencia, trabajando en régimen de velocidad variable, aprovechando mejor la energía del viento y constituyendo junto con la energía hidroeléctrica, el soporte principal de la generación eléctrica en los sistemas nacionales. Para fines del año 2000 se esperan están instalados en el mundo, más de 14,000 MW. En Europa, Alemania, Dinamarca, el Reino Unido, España y Grecia tienen los programas más ambiciosos. En España, la empresa eléctrica de la Provincia de Navarra tiene planeada la instalación de 54 Centrales eoloeléctricas y espera producir más del 50% de la energía que distribuye. La empresa eléctrica de la Provincia de Euskadi (País Vasco) también prevé un desarrollo importante, lo que ha ocasionado, paradójicamente, que grupos ecologistas protesten por lo que consideran excesivo.
Para el año 2020, la Asociación Europea de Energía Eólica, estima tener más de 20,000 MW instalados de potencia eólica para generación de electricidad. China y la India son dos países que han decidido dar un impulso grande a esta forma de generación eléctrica, para lo cual se han asociado con empresas europeas para fabricar en esos países el equipamiento requerido. En América Latina, Costa Rica y Argentina llevan la delantera, con 20 y 9 MW respectivamente. En Argentina son las empresas eléctricas cooperativas de la Patagonia las que han dado el impulso, amen de que las leyes estatales de la Provincia de Chubut, obligan a un 10% de la generación eléctrica con energía eólica. México tiene una central de 1,575 kW en la Venta, Oaxaca, con planes de ampliarla a 54 MW. Nicaragua también tiene planes de instalar una central eólica de al menos 30 MW. En el Caribe, la empresa eléctrica de Curazao opera desde marzo de 1994 una centralita de 4 MW que fue la primera eoloeléctrica en América Latina y el Caribe.
En México, el desarrollo de la tecnología de conversión de energía eólica a electricidad, se inició con un programa de aprovechamiento de la energía eólica en el Instituto de Investigaciones Eléctricas (IIE) en febrero de 1977, cuando la Gerencia General de Operación de Comisión Federal de Electricidad, cedió al IIE la Estación Experimental Eoloeléctrica de El Gavillero, en las cercanías de Huichapan, Hidalgo, donde se pretendía energetizar el ejido ya electrificado y con servicio, a partir de una microcentral eólica, integrada por dos aerogeneradores australianos Dunlite de 2 kW cada uno, un banco de baterías, y un inversor de 6 kW para alimentar la red de distribución del poblado. El inversor, construido por personal de CFE, fallaba arriba de los dos kW de demanda por problemas de calidad de componentes, por lo que físicamente no pudo realizarse el experimento, sin embargo, estando instrumentado el sitio, se tenían los promedios horarios de velocidad del viento y conociéndose las características de respuesta de los aerogeneradores era posible estimar numéricamente la energía que podría suministrarse al ejido. El régimen de vientos del lugar producía exceso de energía en verano y déficit en invierno para el consumo normal del poblado.


LOS MOLINOS
DESCRIPCIÓN

Molino es una máquina que transforma el viento en energía aprovechable. Esta energía proviene de la acción de la fuerza del viento sobre unas aspas oblicuas unidas a un eje común. El eje giratorio puede conectarse a varios tipos de maquinaria para moler grano, bombear agua o generar electricidad. Cuando el eje se conecta a una carga, como una bomba, recibe el nombre de molino de viento. Si se usa para producir electricidad se le denomina generador de turbina de viento.
LOS PRIMEROS MOLINOS
Los molinos movidos por el viento tienen un origen remoto. En el siglo VII d.C. ya se utilizaban molinos elementales en Persia (hoy, Irán) para el riego y moler el grano. En estos primeros molinos la rueda que sujetaba las aspas era horizontal y estaba soportada sobre un eje vertical. Estas máquinas no resultaban demasiado eficaces, pero aún así se extendieron por China y el Oriente Próximo.
En Europa los primeros molinos aparecieron en el siglo XII en Francia e Inglaterra y se distribuyeron por el continente. Eran unas estructuras de madera, conocidas como torres de molino, que se hacían girar a mano alrededor de un poste central para levantar sus aspas al viento.
El molino de torre se desarrolló en Francia a lo largo del siglo XIV. Consistía en una torre de piedra coronada por una estructura rotativa de madera que soportaba el eje del molino y la maquinaria superior del mismo.
Estos primeros ejemplares tenían una serie de características comunes. De la parte superior del molino sobresalía un eje horizontal. De este eje partían de cuatro a ocho aspas, con una longitud entre 3 y 9 metros. Las vigas de madera se cubrían con telas o planchas de madera. La energía generada por el giro del eje se transmitía, a través de un sistema de engranajes, a la maquinaria del molino emplazada en la base de la estructura.

APLICACIONES Y DESARROLLO
Además de emplearse para el riego y moler el grano, los molinos construidos entre los siglos XV y XIX tenían otras aplicaciones, como el bombeo de agua en tierras bajo el nivel del mar, aserradores de madera, fábricas de papel, prensado de semillas para producir aceite, así como para triturar todo tipo de materiales. En el siglo XIX se llegaron a construir unos 9.000 molinos en Holanda.
El avance más importante fue la introducción del abanico de aspas, inventado en 1745, que giraba impulsado por el viento. En 1772 se introdujo el aspa con resortes. Este tipo de aspa consiste en unas cerraduras de madera que se controlan de forma manual o automática, a fin de mantener una velocidad de giro constante en caso de vientos variables. Otros avances importantes han sido los frenos hidráulicos para detener el movimiento de las aspas y la utilización de aspas aerodinámicas en forma de hélice, que incrementan el rendimiento de los molinos con vientos débiles.
El uso de las turbinas de viento para generar electricidad comenzó en Dinamarca a finales del siglo pasado y se ha extendido por todo el mundo. Los molinos para el bombeo de agua se emplearon a gran escala durante el asentamiento en las regiones áridas del oeste de Estados Unidos. Pequeñas turbinas de viento generadoras de electricidad abastecían a numerosas comunidades rurales hasta la década de los años treinta, cuando en Estados Unidos se extendieron las redes eléctricas. También se construyeron grandes turbinas de viento en esta época.

TURBINAS DE VIENTO MODERNAS
Las modernas turbinas de viento se mueven por dos procedimientos: el arrastre, en el que el viento empuja las aspas, y la elevación, en el que las aspas se mueven de un modo parecido a las alas de un avión a través de una corriente de aire. Las turbinas que funcionan por elevación giran a más velocidad y son, por su diseño, más eficaces. Las turbinas de viento pueden clasificarse en turbinas de eje horizontal, en las que los ejes principales están paralelos al suelo y turbinas de eje vertical, con los ejes perpendiculares al suelo. Las turbinas de ejes horizontales utilizadas para generar electricidad tienen de una a tres aspas, mientras que las empleadas para bombeo pueden tener muchas más. Entre las máquinas de eje vertical más usuales destacan las Savonius, cuyo nombre proviene de sus diseñadores, y que se emplean sobre todo para bombeo; y las Darrieus, una máquina de alta velocidad que se asemeja a una batidora de huevos.

Bombeadoras de agua Una bombeadora de agua es un molino con un elevado momento de torsión y de baja velocidad, frecuente en las regiones rurales de Estados Unidos. Las bombeadoras de agua se emplean sobre todo para drenar agua del subsuelo. Estas máquinas se valen de una pieza rotatoria, cuyo diámetro suele oscilar entre 2 y 5 m, con varias aspas oblicuas que parten de un eje horizontal. La pieza rotatoria se instala sobre una torre lo bastante alta como para alcanzar el viento. Una larga veleta en forma de timón dirige la rueda hacia el viento. La rueda hace girar los engranajes que activan una bomba de pistón. Cuando los vientos arrecian en exceso, unos mecanismos de seguridad detienen de forma automática la pieza rotatoria para evitar daños en el mecanismo.

Generadores eléctricos Los científicos calculan que hasta un 10% de la electricidad mundial se podría obtener de generadores de energía eólica a mediados del siglo XXI. Los generadores de turbina de viento tienen varios componentes. El rotor convierte la fuerza del viento en energía rotatoria del eje, una caja de engranajes aumenta la velocidad y un generador transforma la energía del eje en energía eléctrica. En algunas máquinas de eje horizontal la velocidad de las aspas puede ajustarse y regularse durante su funcionamiento normal, así como cerrarse en caso de viento excesivo. Otras emplean un freno aerodinámico que con vientos fuertes reduce automáticamente la energía producida. Las máquinas modernas comienzan a funcionar cuando el viento alcanza una velocidad de unos 19 km/h, logran su máximo rendimiento con vientos entre 40 y 48 km/h y dejan de funcionar cuando los vientos alcanzan los 100 km/h. Los lugares ideales para la instalación de los generadores de turbinas son aquellos en los que el promedio anual de la velocidad del viento es de cuando menos 21 km/h.

La energía eólica, que no contamina el medio ambiente con gases ni agrava el efecto invernadero, es una valiosa alternativa frente a los combustibles no renovables como el petróleo. Los generadores de turbinas de viento para producción de energía a gran escala y de rendimiento satisfactorio tienen un tamaño mediano (de 15 a 30 metros de diámetro, con una potencia entre 100 y 400 kW). Algunas veces se instalan en filas y se conocen entonces como granjas de viento. En California se encuentran algunas de las mayores granjas de viento del mundo y sus turbinas pueden generar unos 1.120 MW de potencia (una central nuclear puede generar unos 1.100 MW).
El precio de la energía eléctrica producida por ese medio resulta competitivo con otras muchas formas de generación de energía. En la actualidad Dinamarca obtiene más del 2% de su electricidad de las turbinas de viento, también empleadas para aumentar el suministro de electricidad a comunidades insulares y en lugares remotos. En Gran Bretaña, uno de los países más ventosos del mundo, los proyectos de turbinas de viento, especialmente en Gales y en el noroeste de Inglaterra, generan una pequeña parte de la electricidad procedente de fuentes de energía renovable. En España se inauguró en el año 1986 un parque eólico de gran potencia en Tenerife, Canarias. Más tarde se hicieron otras instalaciones en La Muela (Zaragoza), el Ampurdán (Gerona), Estaca de Bares (La Coruña) y Tarifa (Cádiz), ésta dedicada fundamentalmente a la investigación. La energía eólica supone un 6% de la producción de energía primaria en los países de la Unión Europea.

No hay comentarios:

Publicar un comentario en la entrada